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With an Introduction to GPU Programming 



� Mentor: Dr. Bob Robey 
� Workshop Coordinator: Dr. Scott 

Runnels 
� Collaborator: David Nicholaeff 
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Thank you! 



�  Motivation 
�  Problems with capturing discontinuities 
�  Methods implemented and tested 
◦  First order Upwind 
◦  Lax-Wendroff 
◦  Limiters 
◦  MUSCL 
◦  SUPG 

�  Early MPDATA results 
�  GPU Programming 
◦  Introduction 
◦  Results solving the shallow water equations 

�  Conclusions 
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A simple model problem showing the advection of radioactive water dumped into the 
ocean and carried by a rotational current across the Pacific. 



� We are using the 1D advection equation 
(in our 2D codes) to test various 
methods: 

� We are looking at the advection of 3 
different types of waves 
◦  Square Wave 
◦ Triangular Wave 
◦  Exponential Smooth Wave 

Di↵erent Methods

Sean Davis

August 15, 2012

1 Introduction
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• Conservative 1st order scheme 
• Overly dissipative 



� Conservative 2nd order scheme 
� Approximate solution has oscillations 

around sharp gradients 
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� Godunov’s Theorem – Any linear scheme 
above first order accurate (space) cannot 
be Total Variation Diminishing (TVD). 

�  Solution: Limiters (a nonlinear scheme) 

      Exact Solution 
      Non-TVD Solution 



�  1st order near discontinuities, 2nd order elsewhere 
�  For linear equations is mathematically guaranteed 

to be TVD 
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�  Used a modified Osher-Chakravarthy scheme 
�  Upwind biased 
�  Second order TVD approximation 
�  Numerical oscillations avoided using a minmod 

function 

Slid
e 10 



�  Trial functions – a set of functions assumed to 
approximate the underlying solution. The trial 
functions have degrees of freedom that must be 
solved for. 

�  Test functions – a set of functions used to solve for 
the degrees of freedom of the trial functions.  Uses 
the weak formulation of the governing equation. 

�  Petrov-Galerkin – Test functions ≠ Trial functions  
�  SUPG – Choose test functions to be: 

    where N is a trial function 
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�  Inspired by finite difference methods (upwinding and 
artificial diffusion) 

�  Applies to linear advection/diffusion equations of any 
dimension 

�  Is neither TVD nor conservative 
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�  Lax-Wendroff with slope limiters 
◦  Effective for sharp discontinuities 
◦  Overly dissipative for thin waves (cuts off the top of the 

triangular/gaussian waves) 
◦  more dissipative than other methods 
◦  Superbee limiter artificially sharpens smooth waves 

�  MUSCL with ACM 
◦  most effective for problems with discontinuities 
◦  Unnaturally sharpens the solution 

�  SUPG 
◦  Balances well between diffusion and discontinuity sharpness  
◦  Doesn’t introduce unnatural sharpening 
◦  Requires matrix operations 
◦  Non-conservative 
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Lax-Wendroff (not TVD): Lax-Wendroff (Superbee): 

MUSCL: SUPG: 



�  A donor-cell approximation is defined in terms of 
the local Courant number 

�  Adds a diffusive convective flux 
�  Subtract out added dissipation using an 

antidiffusive velocity 
�  As an example, the 1D advection equation, 

�   becomes, 
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� Antidiffusive correction to the donor cell 
method causes oscillations 
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PRELIMINARY 



�  A Flux Corrected Transport (FCT) algorithm can 
correct the oscillations 

�  Performing additional local corrective iterations 
increases the order of accuracy of the solution 
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PRELIMINARY 
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�  Much higher FLOPS (floating points operations 
per second) per dollar than CPUs. 

�  Different architecture from a CPU. 
◦  Many low throughput processing units 
◦  Cores share global memory 
◦  Warps/Wavefronts – groups of cores run same code.  

�  Must use a language compiled for GPU 
◦  OpenCL – Open programming language for multiple 

CPUs (on same node) and GPU.  
◦  CUDA – Nvidia only. 

�  This Project: OpenCL 
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http://www.realworldtech.com/gt200/3/ 



�  Simplification of the Euler Equations 
◦  Uniform Fluid Density 
◦  Wavelengths are much longer than fluid depth 

◦  Inert Tracer Equation 
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Fluid Height Inert Tracer Concentration 



�  FEM approach for full Euler equations 
�  Implement more of these schemes in the 

GPU code 
� Develop full Euler Equation solvers with 

some of these schemes 
� Alternative numerical methods (WENO, 

Discontinuous Galerkin, etc.) 
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